Designing Efficient Map-Reduce Algorithms

Review of Map-Reduce
A Common Mistake
Size/Communication Trade-Off
Specific Tradeoffs

Jeffrey D. Ullman
Stanford University
Research Is Joint Work of

• Foto Afrati (NTUA)
• Anish Das Sarma (Google)
• Semih Salihoglu (Stanford)
• JU
Review of Map-Reduce

Mappers and Reducers
Key-Value Pairs
Example Application: Join
Mappers and Reducers

• Map-Reduce job =
 – Map function (inputs -> key-value pairs) +
 – Reduce function (key and list of values -> outputs).

• Map and Reduce Tasks apply Map or Reduce function to (typically) many of their inputs.
 – Unit of parallelism.

• **Mapper** = application of the Map function to a single input.

• **Reducer** = application of the Reduce function to a single key-(list of values) pair.
Example: Natural Join

• Join of R(A,B) with S(B,C) is the set of tuples (a,b,c) such that (a,b) is in R and (b,c) is in S.
• Mappers need to send R(a,b) and S(b,c) to the same reducer, so they can be joined there.
• **Mapper output:** key = B-value, value = relation and other component (A or C).
 – **Example:** R(1,2) -> (2, (R,1))
 S(2,3) -> (2, (S,3))
Mapping Tuples

R(1,2) \rightarrow \text{Mapper for } R(1,2) \rightarrow (2, (R,1))

R(4,2) \rightarrow \text{Mapper for } R(4,2) \rightarrow (2, (R,4))

S(2,3) \rightarrow \text{Mapper for } S(2,3) \rightarrow (2, (S,3))

S(5,6) \rightarrow \text{Mapper for } S(5,6) \rightarrow (5, (S,6))
Grouping Phase

- There is a reducer for each key.
- Every key-value pair generated by any mapper is sent to the reducer for its key.
Mapping Tuples

Mapper for $R(1,2)$: $(2, (R,1))$

Mapper for $R(4,2)$: $(2, (R,4))$

Mapper for $S(2,3)$: $(2, (S,3))$

Mapper for $S(5,6)$: $(5, (S,6))$

Reducer for $B = 2$

Reducer for $B = 5$
Constructing Value-Lists

• The input to each reducer is organized by the system into a pair:
 – The key.
 – The list of values associated with that key.
The Value-List Format

(2, [(R,1), (R,4), (S,3)]) → Reducer for B = 2

(5, [(S,6)]) → Reducer for B = 5
The Reduce Function for Join

• Given key b and a list of values that are either (R, a_i) or (S, c_j), output each triple (a_i, b, c_j).
 – Thus, the number of outputs made by a reducer is the product of the number of R’s on the list and the number of S’s on the list.
Output of the Reducers

$$(2, [(R,1), (R,4), (S,3)]) \rightarrow \text{Reducer for } B = 2 \rightarrow (1,2,3), (4,2,3)$$

$$(5, [(S,6)]) \rightarrow \text{Reducer for } B = 5$$
Motivating Example

The Drug Interaction Problem
A Failed Attempt
Lowering the Communication
The Drug-Interaction Problem

• Data consists of records for 3000 drugs.
 – List of patients taking, dates, diagnoses.
 – About 1M of data per drug.

• Problem is to find drug interactions.
 – Example: two drugs that when taken together increase the risk of heart attack.

• Must examine each pair of drugs and compare their data.
Initial Map-Reduce Algorithm

• The first attempt used the following plan:
 – Key = set of two drugs \{i, j\}.
 – Value = the record for one of these drugs.

• Given drug \(i\) and its record \(R_i\), the mapper generates all key-value pairs (\{i, j\}, \(R_i\)), where \(j\) is any other drug besides \(i\).

• Each reducer receives its key and a list of the two records for that pair: (\{i, j\}, [\(R_i\), \(R_j\)]).
Example: Three Drugs

Mapper for drug 1

{1, 2} Drug 1 data

{1, 3} Drug 1 data

Mapper for drug 2

{1, 2} Drug 2 data

{2, 3} Drug 2 data

Mapper for drug 3

{1, 3} Drug 3 data

{2, 3} Drug 3 data

Reducer for {1,2}

Reducer for {1,3}

Reducer for {2,3}
Example: Three Drugs

Mapper for drug 1

- {1, 2} (Drug 1 data)
- {1, 3} (Drug 1 data)

Reducer for {1,2}

Mapper for drug 2

- {1, 2} (Drug 2 data)
- {2, 3} (Drug 2 data)

Reducer for {1,3}

Mapper for drug 3

- {1, 3} (Drug 3 data)
- {2, 3} (Drug 3 data)

Reducer for {2,3}
Example: Three Drugs

- {1, 2} Drug 1 data Drug 2 data Reducer for {1,2}
- {1, 3} Drug 1 data Drug 3 data Reducer for {1,3}
- {2, 3} Drug 2 data Drug 3 data Reducer for {2,3}
What Went Wrong?

- 3000 drugs
- times 2999 key-value pairs per drug
- times 1,000,000 bytes per key-value pair
- = 9 terabytes communicated over a 1Gb Ethernet
- = 90,000 seconds of network use.
A Better Approach

• Suppose we group the drugs into 30 groups of 100 drugs each.
 – Say \(G_1 \) = drugs 1-100, \(G_2 \) = drugs 101-200, \ldots, \(G_{30} \) = drugs 2901-3000.
 – Let \(g(i) \) = the number of the group into which drug \(i \) goes.
The Map Function

• A key is a set of two group numbers.
• The mapper for drug \(i \) produces 29 key-value pairs.
 – Each key is the set containing \(g(i) \) and one of the other group numbers.
 – The value is a pair consisting of the drug number \(i \) and the megabyte-long record for drug \(i \).
The Reduce Function

• The reducer for pair of groups \(\{m, n\}\) gets that key and a list of 200 drug records – the drugs belonging to groups \(m\) and \(n\).

• Its job is to compare each record from group \(m\) with each record from group \(n\).
 – Special case: also compare records in group \(n\) with each other, if \(m = n+1\) or if \(n = 30\) and \(m = 1\).

• Notice each pair of records is compared at exactly one reducer, so the total computation is not increased.
The New Communication Cost

• The big difference is in the communication requirement.

• Now, each of 3000 drugs’ 1MB records is replicated 29 times.
 – Communication cost = 87GB, vs. 9TB.
Theory of Map-Reduce Algorithms

Reducer Size
Replication Rate
Mapping Schemas
Lower Bounds
A Model for Map-Reduce Algorithms

1. A set of *inputs*.
 - Example: the drug records.

2. A set of *outputs*.
 - Example: One output for each pair of drugs.

3. A many-many relationship between each output and the inputs needed to compute it.
 - Example: The output for the pair of drugs \{i, j\} is related to inputs i and j.
Example: Drug Inputs/Outputs

Drug 1 → Output 1-2
Drug 1 → Output 1-3
Drug 1 → Output 1-4
Drug 2 → Output 1-3
Drug 2 → Output 1-4
Drug 3 → Output 1-4
Drug 3 → Output 2-3
Drug 3 → Output 2-4
Drug 4 → Output 2-3
Drug 4 → Output 2-4
Drug 4 → Output 3-4
Example: Matrix Multiplication
Reducer Size

- **Reducer size**, denoted q, is the maximum number of inputs that a given reducer can have.
 - i.e., the length of the value list.
- Limit might be based on how many inputs can be handled in main memory.
- Or: make q low to force lots of parallelism.
Replication Rate

• The average number of key-value pairs created by each mapper is the *replication rate*.
 – Denoted r.

• Represents the communication cost per input.
Example: Drug Interaction

• Suppose we use \(g \) groups and \(d \) drugs.
• A reducer needs two groups, so \(q = 2d/g \).
• Each of the \(d \) inputs is sent to \(g-1 \) reducers, or approximately \(r = g \).
• Replace \(g \) by \(r \) in \(q = 2d/g \) to get \(r = 2d/q \).

Tradeoff!
The bigger the reducers, the less communication.
Upper and Lower Bounds on \(r \)

- What we did gives an upper bound on \(r \) as a function of \(q \).
- A solid investigation of map-reduce algorithms for a problem includes lower bounds.
 - Proofs that you cannot have lower \(r \) for a given \(q \).
Proofs Need Mapping Schemas

• A *mapping schema* for a problem and a reducer size q is an assignment of inputs to sets of reducers, with two conditions:
 1. No reducer is assigned more than q inputs.
 2. For every output, there is some reducer that receives all of the inputs associated with that output.

• Say the reducer *covers* the output.
Mapping Schemas – (2)

- Every map-reduce algorithm has a mapping schema.
- The requirement that there be a mapping schema is what distinguishes map-reduce algorithms from general parallel algorithms.
Example: Drug Interactions

• d drugs, reducer size q.
• No reducer can cover more than $q^2/2$ outputs.
• There are $d^2/2$ outputs that must be covered.
• Therefore, we need at least d^2/q^2 reducers.
• Each reducer gets q inputs, so replication r is at least $q(d^2/q^2)/d = d/q$.
• Half the r from the algorithm we described.

Inputs per reducer | Number of reducers | Divided by number of inputs
Specific Problems

Hamming Distance 1
Matrix Multiplication
Definition of HD1 Problem

• Given a set of bit strings of length b, find all those that differ in exactly one bit.

• **Theorem:** \(r \geq b/\log_2 q. \)
Algorithms Matching Lower Bound

- **q** = reducer size
- **b** = number of reducers
- **r** = replication rate

- Generalized Splitting
 - One reducer for each output

- Splitting
 - All inputs to one reducer

Graph:
- Vertical axis: **b**
- Horizontal axis: **2^1**, **2^{b/2}**, **2^b**
- **q** = reducer size
Matrix Multiplication

• Assume $n \times n$ matrices $AB = C$.
• **Theorem**: For matrix multiplication, $r \geq 2n^2/q$.
Matching Algorithm

Divide rows of A and columns of B into g groups gives
\[r = g = \frac{2n^2}{q} \]
Two-Job Map-Reduce Algorithm

- **A better way**: use two map-reduce jobs.
- **Job 1**: Divide both input matrices into rectangles.
 - Reducer takes two rectangles and produces partial sums of certain outputs.
- **Job 2**: Sum the partial sums.
For i in I and k in K, contribution is $\sum_{j \in J} A_{ij} \times B_{jk}$
Comparison: Communication Cost

• **One-job method**: Total communication = $4n^4/q$.
• **Two-job method** Total communication = $4n^3/\sqrt{q}$.
 – Since $q < n^2$ (or we really have a serial implementation), two jobs wins!
Summary

• Represent problems by mapping schemas
• Get upper bounds on number of covered outputs as a function of reducer size.
• Turn these into lower bounds on replication rate as a function of reducer size.
• For HD = 1 problem: exact match between upper and lower bounds.
• 1-job matrix multiplication analyzed exactly.
• But 2-job MM yields better total communication.