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SPARSITY:                     
What is it Good For?       
Absolutely Nothing? 
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This part relies on the following two papers:  

Ç M. Elad, Sparse and Redundant Representation Modeling τ What Next?, IEEE Signal Processing 
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  Good News 

Today, we have the   
technology and                                   

the know-how to                 
effectively process          

data  
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Seismic Data 

3D Objects 4 

  Which Data?  

Voice Signals 

Stock Market 

Still Images 

Biological Signals 

Videos 

Text Documents 

Email Traffic Radar Imaging 

Matrix Data 

Social Networks 

Traffic info 

Medical Imaging 

http://24.149.138.246/_media/newsletters/USA/USA_Edition6_December09_files/Volume_Imaging.jpg
http://www.google.co.il/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=qP6sc5F9CF2crM&tbnid=vNTslHLOR1tk1M:&ved=0CAUQjRw&url=http://www.vizago.ch/reconstructions.php&ei=weWNUZKQJ4KXtAbP_4GoDA&bvm=bv.46340616,d.Yms&psig=AFQjCNHmhI1dTCia7cxM-GT7LAi5PuR5gQ&ust=1368340276449695


Sparse Modeling of Graph-{ǘǊǳŎǘǳǊŜŘ 5ŀǘŀ Χ ŀƴŘ LƳŀƎŜǎ 
By: Michael Elad 

    

5 

  What Processing?  

What can we do for such signals? 
 

Ç Denoising ς removal of noise from the data 

Ç Interpolation (inpainting) ς recovery of missing values 

Ç Prediction ς extrapolating the data beyond the given domain 

Ç Compression ς reduction of storage and transmission volumes 

Ç Inference (inverse problems) ς recovery from corrupted measurements 

Ç Separation ς ōǊŜŀƪƛƴƎ Řƻǿƴ ŀ Řŀǘŀ ǘƻ ƛǘǎ ƳƻǊǇƘƻƭƻƎƛŎŀƭ άƛƴƎǊŜŘƛŜƴǘǎέ 

Ç Anomaly detection ς discovering outliers in the data  

Ç Clustering ς gathering subsets of closely related instances within the data 

Ç Summarizing ς creating a brief version of the essence of the data 

Segmentation, Style-changing, Conversion, Matching, Recognition, Indexing, Semi-supervised learning, Identification, Classification, SȅƴǘƘŜǎƛǎΣ 5ŜǘŜŎǘƛƻƴΣ Χ 
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  So, Here is a Simple Question 

Ç Is it obvious that all these processing options should be possible?  
 

Ç Consider the following data source:  

 

 

 

      Many of the processing tasks mentioned above are impossible for this data 
 

Ç Is there something common to all the above-mentioned signals, that makes 
ǘƘŜƳ άprocessableέΚ  

 

Why all This is Possible? 

IID Random Number 
Generator ᴓπȟρ ὼ ὼȟὼȟὼȟé ȟὼ  
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  Why? We Know The Answer(s) 

Low Entropy 
 

Low Dimensionality 
 

High Redundancy 
 

Inner Structure 
 

Self Dependencies 
 

Self Similarity  
 

Manifold Structure  
 

ΧΦ  

Our Data is Structured                                                       
A signal composed of N scalar numbers 

has ὯḺὔ true degrees of freedom 
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  Data Models 

ὼ Ὢ ὺ 

The data we 
operate on 

Models are arbitrary 
beliefs and are 
ALWAYS wrong 

Parameters that 
govern the model 

(to be learned) 

The low-
dimensional 

representation or 
άƛƴƴƻǾŀǘƛƻƴέ 

! άǿƛǎŜƭȅέ 
chosen 
function 

Note: This is not    
the only way to 
impose structure   
on data ς this 
approach is        
known as the 
άǎȅƴǘƘŜǎƛǎ ƳƻŘŜƭέ 
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Processing signals                                                                                        
(denoise, interpolate, predict, compress, infer, 

separate, detect, cluster, summarize, Χύ 
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  Processing Data Using Models 

Processing signals requires knowledge of their structure ς 

we need the model ὼ Ὢ ὺȟ along with its                       

learned parameters 

Q: Why all This is Possible? 

 

A: Because of the structure! 
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  Processing Data Using Models 

ὼ ÍÉÎ
ȟ
 ώ ╜ὼ    ίȢὸȢ ὼ Ὢ ὺ 

Example 2 - Inference 
 

Given a deteriorated version of a signal, 
ώ ╜ὼ ᾀ, recovering ὼ from ώ is done by                          

projecting ώ onto the model: 

 
 

This covers tasks such as denoising, 
ƛƴǘŜǊǇƻƭŀǘƛƴƎΣ ƛƴŦŜǊǊƛƴƎΣ ǇǊŜŘƛŎǘƛƴƎΣ Χ 

 ὼ Ὢ ὺ 

Example 1 - Compression 
 

Given a signal ὼ, its compression is done by                          

computing its representation ὺ:   

ὼȟὼ ÍÉÎ
ȟȟ ȟ

 ώ ὼ ὼ  

                 

                       ίȢὸȢ  ὼ Ὢ ὺ      

                        ὼ Ὢ ὺ  

Example 3 - Separation 
 

Given a noisy mixture of two 
signals, ώ ὼ ὼ ᾀ, each 

emerging from a different model, 
separation is done by 

 
 
 
 
 
 

The goodness of the separation is 
dictated by the overlap between 

the two models 

Maybe another slide on: 
 
Å Anomaly detection: for a given signal y, 

which can be either from the model 
(with noise) or an anomaly, we can 
decide on its nature by the projection 
distance of y to the model.  

 
 
 
 
 
 
Å Summary: for a given signal y, we may 

ask what is the x that comes from the 
model and which will be J-sparse. This 
way, the surviving J features are a 
summary. Another option is to work 
with a dictionary of topics, and force J -
sparsity over the dictionary 
representation.  

ὼ ÍÉÎ
ȟ
 ώ ὼ  ‘ὼ Ὢ ὺ  ‗ὼ  

ὼ ÍÉÎ
ȟ
 ώ ὼ   ίȢὸȢ ὼ Ὢ ὺ 

ὈὩὧὭίὭέὲ
ὙὩὫόὰὥὶ ώ ὼ Ὕ

ὃὲέάὥὰώὕὸὬὩὶύὭίὩ
 



Sparse Modeling of Graph-{ǘǊǳŎǘǳǊŜŘ 5ŀǘŀ Χ ŀƴŘ LƳŀƎŜǎ 
By: Michael Elad 

    

11 

  An Example  

N samples 

ὼȟὼȟȣȟὼ ᶰᴙ  

Model assumption: All these data vectors  reside 
in a single subspace S  of dimension ὯḺὔ 

Ἕὺ ὼ 
ÆÏÒ Ὥ ρȟςȟȣȟά 

 
ὔ 

Ὧ 

Learning ɡ:                   
finding the best Q 

:  PCA-KLT-Hotelling 

ᴙ  ὼ Ὢ ὺ ? 

Ἕ 
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  Improving the Model ς Local Linearity  

ᴙ  

We may assume 
that around 

every point ὼ,  
its nearest 
neighbors           

(in ᴙ ) form a 
very low-

dimensional 
subspace 

¢Ƙƛǎ ōŜƘŀǾƛƻǊ Ŏŀƴ ōŜ ǳǎŜŘ ƛƴ ǾŀǊƛƻǳǎ ǿŀȅǎ Χ 

ὼȟὼȟȣȟὼ ᶰᴙ  
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  Union of (Affine) Subspaces  

Model assumption: All these data vectors                          

reside in a union of L affine subspaces, ẕ Ὓ,          
(UoS) of low dimensions ὯḺὔ 

Fitting the model: finding Ἕ■ȟὧ■■
╛

 

ᴙ  ὼ Ὢ ὺ ? 

ὼȟὼȟȣȟὼ ᶰᴙ  

Identify the subspace ὼ belongs to,  

ὼᶰὛ (Mahalanobis Distance) and 

­ ὼ Ἕὺ ὧ 
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  Example: PCA Denoising (ώ ὼ ᾀ) 

The case of PCA/KLT: 

ὼ ÍÉÎ
ȟ
 ώ ὼ  

          ίȢὸȢ ὼ Ἕὺ 
 

 
ὼ ἝἝἝ Ἕώ 

              ἝἝώ 

ÇThe data vector ώ is projected onto the                    

Ὧ-dimensional space spanned by Ἕ 

ÇAs the noise is 
spread evenly in 
the ὔ-dim. 
space, only Ὧὔϳ  
of it remains             
­ effective 
denoising     

ᴙ  
ώ 

ίὴὥὲἝ  
ὼ The Case of UoS:  

project to all the L subspaces, and choose the              
outcome that is closest to ώ (complexity is ³L) 
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  Lets Talk About Sparsity 

SparsityΥ ! ŘƛŦŦŜǊŜƴǘ ǿŀȅ ǘƻ ŘŜǎŎǊƛōŜ ŀ ǎƛƎƴŀƭΩǎ ǎǘǊǳŎǘǳǊŜ 

Ἆὥ ὼ    
ρ Ὥ ά 
where ὥ is sparse 

 

ὖ ὔ  

ὔ 

Model assumption: All data vectors  are linear 
combination of FEW (ὯḺὔ) columns from Ἆ 

ὼȟὼȟȣȟὼ ᶰᴙ  

PCA  Model 

Ἕὺ ὼ 
 

ρ Ὥ ά 

 

Ὧ 

ὔ 

Ἆ: ὈὭὧὸὭέὲὥὶώ 
Its columns: ὃὸέάί 



Sparse Modeling of Graph-{ǘǊǳŎǘǳǊŜŘ 5ŀǘŀ Χ ŀƴŘ LƳŀƎŜǎ 
By: Michael Elad 

    

16 

  Sparsity ς A Closer Look  

Ἆὥ ὼ   ρ Ὥ ά 

where ὥ is sparse 

 

ὖ 

ὔ 

Dimensionality Reduction 
 

If ὥ ὯḺὔ, this means that the 

information carried by ὥ is ςὯḺὔ,  
thus giving effective compression 

This model leads to a much richer UoS structure, with (exponentially) 
many more subspaces and yet all are defined through the concise matrix Ἆ 

Geometric Form 
 

There are ὖ
Ὧ

 possible supports 

 
Each forms a different subspace 

Example: ὔ ςππȟὖ τππȟὯ ρπ 

o Dim. reduction factor: ρπ 

o # of subspaces: 
τππ
ρπ

ςȢφὩ ρω 
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  Sparsity in Practice: Back to Denoising 

Sparsity-Based Model: 

   ὥ ÍÉÎ ώ Ἆὥ   

              ­  ὼ Ἆὥ 
 
 
 
 

Find the support (the 
subspace the signal 

belongs to) and project 
 

This is known as                     
the Pursuit problem  

known to be NP-Hard 

Approximation by the THR algorithm: 

ὥ Ὓ ώ Ὓ Ἆώ 

  
ώ 

What if ώ ὼ?             

 ǎƘƻǳƭŘ άsparsifyέ 
the signals of 

interest 

ὼ ÍÉÎ
ȟ
 ώ ὼ     

ίȢὸȢ ὼ Ὢ ὺ 

ώ ὼ ᾀ 
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  To Summarize So Far 

This leads to a rich 
and highly effective 
and popular Union-
of-Subspaces model 

We shall now turn 
to adopt this 

concept for non-
conventional data 
structure - graph 

Broadly speaking, an 
effective way  to  
model data is via 

sparse representations 

Processing data is enabled 
by an appropriate 

modeling  that exposes its 
inner structure  

Note: Our 
motivation is 
άƛƳŀƎŜ 
ǇǊƻŎŜǎǎƛƴƎέ 
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  Why Graphs? Why In This Event?  

 

Ç Fascinating and of Broad Interest: Modeling  graph-structured 
data is fascinating and attracts a lot of attention recently 

 
 

Ç Collaboration: This project is a joint work with Idan Ram     
(PhD student) and Israel Cohen (Prof.) from the Electrical 

Engineering department in the Technion  

Israel 
Cohen 

Idan      
Ram 
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Processing                     

GRAPH                  
Structured Data 
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This part relies on the following two papers:  

Ç LΦ wŀƳΣ aΦ 9ƭŀŘΣ ŀƴŘ LΦ /ƻƘŜƴΣ άDŜƴŜǊŀƭƛȊŜŘ ¢ǊŜŜ-.ŀǎŜŘ ²ŀǾŜƭŜǘ ¢ǊŀƴǎŦƻǊƳέΣ L999 ¢ǊŀƴǎΦ {ƛƎƴŀƭ 

Processing, vol. 59, no. 9, pp. 4199ς4209, 2011.  

Ç LΦ wŀƳΣ aΦ 9ƭŀŘΣ ŀƴŘ LΦ /ƻƘŜƴΣ άwŜŘǳƴŘŀƴǘ ²ŀǾŜƭŜǘǎ ƻƴ DǊŀǇƘǎ ŀƴŘ IƛƎƘ 5ƛƳŜƴǎƛƻƴŀƭ 5ŀǘŀ 

/ƭƻǳŘǎέΣ L999 {ƛƎƴŀƭ tǊƻŎŜǎǎƛƴƎ [ŜǘǘŜǊǎΣ ±ƻƭΦ 19, No. 5, pp. 291ς294 , May 2012.  
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ὼ 

ὼ 

ὼ 

ὼ 

ὼ 

ὼ 

ὼ 

ὼ 

ὼ 

ὼ  

ὼ  

ὼ  

ὼ  

Ὣ 

Ὣ 

Ὣ 

Ὣ 

Ὣ 
Ὣ 

Ὣ 

Ὣ 

Ὣ 

Ὣ  
Ὣ  

Ὣ  

Ὣ  

ÇWe are given a graph: 
o The Ὥ ὸὬ node is characterized        

by a  ὔ-dimen. feature vector ὼ 
o The Ὥ ὸὬ node has a value Ὣ 
o The edge between the Ὥ ὸὬ and 
Ὦ ὸὬ nodes carries the distance 

ύὼȟὼ  for an arbitrary distance 

measure ύẗȟẗ 
 

ÇAssumptionΥ ŀ άǎƘƻǊǘ ŜŘƎŜέ 
implies close-by values, i.e.    

 

      ύὼȟὼ  small ­ Ὣ Ὣ  small 
           

            for almost every pair ὭȟὮ 
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Ç We start with a set of ὔ-dimensional vectors ἦ ὼȟὼȟȣȟὼ ᶰ)2  

These could be 
ÁCŜŀǘǳǊŜ Ǉƻƛƴǘǎ ŦƻǊ ŀ ƎǊŀǇƘΩǎ ƴƻŘŜǎΣ     
ÁSet of coordinates for a point-cloud 

 

 

Ç A scalar function is defined on                                                                                          
these coordinates, Ὣȡ8O  )2 ,                                                    
giving  Ç ὫȟὫȟȣȟὫ  
 

 

Ç We may regard this dataset as                                            
a set of ά samples taken from a high       
dimensional function Ὣȡ)2O )2  
 

 

Ç The assumption that small ύὼȟὼ  implies small Ὣ Ὣ   for almost every 

pair ὭȟὮ implies that the function behind the scene, ὫΣ ƛǎ άǊŜƎǳƭŀǊέ 

  Different Ways to Look at This Data 

22 

é 

X= ὼȟὼȟȣȟὼ  

Ç ὫȟὫȟȣȟὫ  
é 
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  Our Goal 

Wavelet 
Transform 

    Sparse     
       (compact)    
Representation 

Why Wavelet?  
 

Ç Wavelet for regular piece-wise smooth signals is a highly effective 
άsparsifying ǘǊŀƴǎŦƻǊƳέ 

 

Ç We would like to imitate this for our data structure 

X      
     ὼȟὼȟȣȟὼ  

Ç 

    ὫȟὫȟȣȟὫ  
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άMultiscale Wavelets on Trees, Graphs and High Dimensional Data: Theory and 
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 D. Heinen and G. Plonka, 2012 

  Wavelet for Graphs ς A Wonderful Idea 

24 

L ǿƛǎƘ ǿŜ ǿƻǳƭŘ ƘŀǾŜ ǘƘƻǳƎƘǘ ƻŦ ƛǘ ŦƛǊǎǘ Χ  

http://www.math.duke.edu/~mauro/Papers/DiffusionWavelets.pdf
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2008.00672.x/pdf
http://arxiv.org/pdf/0912.3848v1.pdf
http://www.wisdom.weizmann.ac.il/~nadler/Publications/wavelets_trees_p18.pdf
http://na.math.uni-goettingen.de/pdf/MR-denoising.pdf
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  The Main Idea ς Permutation 

Ὣ Ὣ Ὣ Ὣ Ὣ Ὣ Ὣ Ὣ 

Ὣ Ὣ Ὣ Ὣ Ὣ Ὣ Ὣ Ὣ 

Permutation using 

P T T-1 P-1 Processing 

Permutation 1D Wavelet 

X= ὼȟὼȟȣȟὼ  

Ç 

Ç  

Ç 
Ç  Ç  

Ç 
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ὦ ὦ  

Ὠ  

Ὤ 

ὫӶ 

ςȢ 

ςȢ 

ὦ  

Ὠ  

ςȢ 

ςȢ 

Ὤ 

ὫӶ 

0 0  

  Permutation Within the Pyramid 

Ç In fact, we propose to perform a different permutation in each resolution 
level of the multi-scale pyramid: 
 
 
 
 
 
 
 

Ç Naturally, these permutations will be applied reversely in the inverse 
transform  

Ç Thus, the difference between this and the plain 1D wavelet transform 
applied on Ç are the additional permutations, thus preserving the 

ǘǊŀƴǎŦƻǊƳΩǎ linearity and unitarity, while also adapting to the input signal  
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Ç Lets start with P0 ς the permutation applied on the incoming data 
 

Ç Recall: for wavelet to be effective, P0Ç  should be most άǊŜƎǳƭŀǊέ 
 

Ç However: we may be dealing with corrupted signals Ç όƴƻƛǎȅΣ Χύ  
 

Ç To our help comes the feature vectors in ἦ, which reflect on the order of the 
signal values, gk. Recall:  
 

 
 
Ç ά{ƛƳǇƭƛŦȅƛƴƎέ Ç can be done finding the shortest path that visits in each point 

in X once: the Traveling-Salesman-Problem (TSP): 
 
 

  Permute to Obtain Maximal Regularity  

ÍÉÎ
0

Ὣ Ὥ Ὣ Ὥ ρ  ÍÉÎ
0

ύὼȟὼ  

Small ύὼȟὼ implies small Ὣὼ Ὣὼ   for almost every pair ὭȟὮ 
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ὼ 

Ὣ Ὣ Ὣ Ὣ Ὣ Ὣ Ὣ Ὣ 
Ç 

Ὣ Ὣ Ὣ Ὣ Ὣ Ὣ Ὣ Ὣ 
Ç 

  Traveling Salesman Problem (TSP) 

We handle the TSP task by a               
greedy (and crude) approximation:  
 

o Initialize with a randomly chosen index j;  
o Initialize the set of already chosen indices to ɋ(1)={ j} ;  
o Repeat k=1:1:m-1 times: 
ÅFind xi ς the nearest neighbor to xɋ(k) such that iÎɋ;  
ÅSet ɋ(k+1)={ i} ;  

o Result: the set ɋ holds the proposed ordering. 

)2 
ὼ ὼ 

ὼ 

ὼ 

ὼ 

ὼ 

ὼ 




