On the Complexity of Verifying Stateful Networks

A. Panda S. Shenker Y. Velner K. Alpernas A. Rabinovich M. Sagiv

Berkeley
UNIVERSITY OF CALIFORNIA

European Research Council
Networks provide end-to-end connectivity

- Just contain host and switches
- All interesting processing at the hosts

Classical Networking
Ted Stevens was right
Security & Performance

- Security (firewalls, IDSs,...)
- Performance (caches, load balancers,...)
- New functionality (proxies,...)
Middleboxes

• Middleboxes are intermediaries
 – Interposed in-between the communicating hosts
 – Often without knowledge of one or both parties

• Examples
 – Network address translators (NAT)
 – Firewall
 – Traffic shapers
 – Intrusion detection systems (IDSs)
 – Transparent Web proxy caches
 – Application accelerators
NAT

<table>
<thead>
<tr>
<th>local</th>
<th>prt</th>
<th>global</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.1</td>
<td>1</td>
<td>138.76.29.7</td>
</tr>
</tbody>
</table>
Firewalls

Trusted Hosts

<table>
<thead>
<tr>
<th>Trusted Hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
</tr>
</tbody>
</table>
Learning Switch

A on 1
D on 3

B

C

A

D
Web Clients and Servers

• Most Web applications use client-server protocol
 – Client sends a request
 – Server sends a response
• Proxies play both roles
 – A server to the client
 – A client to the server
Two Views of Middleboxes

• An abomination (toevah)
 – Violation of layering
 – Breaks the functional model
 – Responsible for many subtle bugs

• A practical necessity
 – Significant part of the network
 – Solving real and pressing problems
 – Needs that are not likely to go away
 – Local functionality enhancements
Reachability/Isolation

• Reachability:
 • A packet of type t sent from host A may reach host B
 • packets from an ATM to the bank database

• Isolation:
 • A packet of type t sent from host A never reaches host B
 • packets from a customer's cell phone to the bank database
Firewall Misconfiguration

A is isolated from B
Research Question

Can we algorithmically prove that a given network of middleboxes establishes isolation between two given hosts for certain types of and packets?
Assumptions

- Finite set of hosts H (extended later)
- Finite set of packet types T
- Finite set of ports Pr per middlebox
- Finite set of packet headers
 $P = t: T \times src: H \times dst: H \times pr: Pr$
- Fixed set of middleboxes M
- Fixed undirected topology
 $E \subseteq (H \times Pr \times M) \cup (M \times Pr \times Pr \times M)$
- The semantics of each middlebox is a function
 - $m: P^* \times P \rightarrow 2^P = P^* \rightarrow (P \rightarrow 2^P)$
 - Packet bodies are unchanged
Middlebox classification

Finite State Middleboxes

Eventually stateless

Increasing

Firewall

Stateless

Switch

Nat

Decreasing

IDS

Learning Switch

Cache

Load Balancer
Stateless Middleboxes

• Behavior independent of the history
• For all $h, h' \in P^*$:
 – $m(h) = m(h')$
 – For all $p \in P$: $m(h, p) = m(h', p)$

• Examples
 – Switches and Routers
 – ACL Firewall
 – Simple load-balancer
Increasing Middleboxes

• Forwarding behavior increased over time
• For all $h, h' \in P^*$ such that $h \sqsubseteq h'$ and $p \in P$:
 $m(h, p) \subseteq m(h', p)$
• Good examples
 – Stateless
 – Firewall
• Bad Examples
 – Learning Switch
 – Cache
Decreasing Middleboxes

• Forwarding behavior decreased over time
• For all $h, h' \in P^*$ such that $h \sqsubseteq h'$ and $p \in P$:
 – $m(h, p) \supseteq m(h', p)$
• Good Examples
 – Stateless
 – Learning switch
 – IDS?
Eventually Stateless Middleboxes

• Forwarding eventually constant for all histories
• There exists some \(k \)
 – For all histories \(h_1, h_2, \ldots, h_k \) such that \(h_i \sqsubseteq h_{i+1} \)
 for all \(p \in P \) if \(m(h_1, p), \ldots, m(h_{k-1}, p) \) are all distinct
 then \(m(h_k, p) = m(h_{k-1}, p) \)
• Good examples
 – Learning switches
 – IDS?
 – Cache
• Bad Examples
 – Round-robin load balancer
Modeling Middliboxes by FSMs

• A Mealy Machine $m = \langle S, s_0, P, f, \delta \rangle$
 where
 – S are the states of the middleboxes
 – $s_0 \in S$ is the initial state
 – $f: S \times P \to 2^P$ is the current forwarding behavior
 – $\delta: S \times P \to 2^S$ is the next state
 – Extend δ to histories
 • $\delta([\])) = \{s_0\}$
 • $\delta(h . p) = \delta(\delta(h), p))$
• m models $m: P^* \times P \to 2^P$ when for all $h \in P^*$ and $P \in P$:
 – $f(\delta(h), p) = m(h, p)$
Partial FSM for Firewall
Middlebox classification

Finite State Middleboxes

Eventually stateless

Increasing

Firewall

Stateless

Switch

Nat

Decreasing

IDS

Learning

Switch

Cache

Load Balancer
Decidability

• When the order of packet arrival must be respected checking isolation is undecidable even for finite state middleboxes
 – Cycles in the topology allows counting

• When the packet are processed in arbitrary order checking reachability and isolation becomes decidable even for finite state machines
 – Reduction to Well-Quasi-Orders
 – But complexity is high
 • EXPSPACE-Complete
Complexity Results

Finite State Middleboxes

Eventually stateless

Increasing

Decreasing

Stateless

Polynomial

NP-complete

NP-complete

EXPSPACE - complete
Abstract Middlebox Definition Language

- Powerful enough to express the behavior of interesting middleboxes
- Succinct
 - Sometimes exponential state saving
- Simple enough for analysis
- Lends itself to classification of middleboxes
 - Same worst case complexity
 - But sometimes exponential saving
Firewall (AMDL)

BEGIN_MBOX(firewall)

#define TRUSTED_PORT 0

INIT

(host) TrustedHosts = {};

RECV(s, d, t, port) ⇒

if(port == TRUSTED_PORT || TrustedHosts (s))
 if(port == 0)
 forward(s,d,t, 1);
 if(port == 1)
 forward(s,d,t, 0);
 TrustedHosts.ADD(d);

/* else – packet is discarded */

END_MBOX
Firewall vs. FSM

BEGIN_MBOX(firewall)
#define TRUSTED_PORT 0
INIT
(host) TrustedHosts = {};
RECV(s, d, t, port) \Rightarrow
 if(port == TRUSTED_PORT ||
 TrustedHosts (s))
 if(port == 0)
 forward(s,d,t,1);
 if(port == 1)
 forward(s,d,t,0);
 TrustedHosts.ADD(d);
/* else - packet is discarded */
END_MBOX
The MVer Toolset

Counterexample

AMDL spec

Front-End

First Order Formula

Datalog+ Program

Petri-Net

Z3

μZ

Lola
(Some) Related Work

Dynamic
- Veriflow
 - Online verification
 - Handles dynamic networks pretty well
- Header Space Analysis
 - Offline and online verification

Static
- Firewall Verification
 - Margrave
 - Statetless
 - Does not handle loops
- SDN
 - Netkat
 - Verification of Reachability
 - Vericon
 - Arbitrary code
 - Undecidability
Summary

• Middlebox classification

• Complexity results

• Initial toolset
Acknowledgments

• The Noun Project
• Nate Foster, Michael Freedman, and Jane Rexford