Data Storage Using a Non-integer Number of Bits per Cell

Naftali Sommer
June 21st, 2017
The Conventional Scheme

- Information is stored in a memory cell by setting its threshold voltage
 - Many cells are programmed and read simultaneously

- Conventional Flash memory devices store an integer number of bits per cell
 - Number of voltage states is a power of 2

- Easy to program, read and protect by Error Correcting Codes (ECC) using simple schemes

1 bit/cell

2 bits/cell

3 bits/cell
The Conventional Scheme - 3 Bits/Cell Example

- Multi-level coding - 3 independent logical data pages are written to the same cells
 - Denoted LSB, MSB, USB

- Due to the Gray mapping, each page can be independently read with a relatively small number of sense operations
 - LSB - single sense (RV34), MSB - 2 senses (RV32, RV36), USB - 4 senses
 - Average read latency of \((1+2+4)/3 = 2.33\) senses per page
 - Beneficial for random read scenarios

- A binary Error Correcting Code (ECC) can be independently applied to each page
Motivation for a Non Integer Number of Bits/cell

- The distribution width and the available voltage window define the equivalent Signal to Noise Ratio (SNR)
- This SNR limits the net number of bits/cell that can be reliably stored
- Example: assume that the available SNR enables net storage of 2.5 bits/cell

<table>
<thead>
<tr>
<th>Number of voltage states</th>
<th>Number of bits/cell</th>
<th>ECC code rate</th>
<th>Net number of bits/cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>log2(8) = 3</td>
<td>0.83</td>
<td>2.5</td>
</tr>
<tr>
<td>7</td>
<td>log2(7) = 2.8</td>
<td>0.89</td>
<td>2.5</td>
</tr>
</tbody>
</table>

- Advantages of the 7 states scheme
 - Simpler implementation of the ECC - lower power consumption and die size
 - Higher code rate, less errors to correct
 - Faster to program
Problem Statement

- We would like to design a practical mapping scheme for a non power-of-2 number of states (e.g. 9, 7, 6, 5, 3) that will enable:
 - Simple ECC scheme
 - Short read latency for random read

- Potential solution - use non-binary symbols, each symbol mapped to a cell
 - Practical non-binary ECC schemes exist (e.g. LDPC, BCH)
 - However - random read operations will have high latency
 - For example, 6 sense operations are needed to distinguish between 7 states
 - Much higher than the 2.33 sense operations shown in the previous slides for 8 voltage states

- Main challenge - how to map several independent pages to the same cells, such that different pages are read with disjoint sense operations
Proposed Scheme for the 7 States Case

- Proposed scheme - map 3 independent pages as done for 8 states, but don’t use the highest level
 - Problem - what to do if \{\text{LSB, MSB, USB}\} = \{0, 1, 1\}?
 - Solution - write LSB & MSB pages as before, but map USB bits only to cells for which \{\text{LSB, MSB}\} = \{11, 10, 00\}
 - Only 3/4 of the cells can be used for storing the USB page
 - USB page size will be 3/4 of the LSB and MSB page sizes
 - For example: LSB and MSB are 16 KByte, USB is 12 KByte
 - Conditionally invert the LSB and MSB data before programming in order to make sure that at least 3/4 of the cells will enable a USB bit programming

- Equivalent to storing 2.75 bits/cell
 - Close to the theoretical limit of \(\log_2(7) = 2.8\) bits/cell
A binary ECC is applied independently to each page, similar to the conventional scheme

Read latency

- First 2 pages are read with low-latency in the same way as in the conventional scheme
 - Single sense for LSB, 2 senses for MSB
- For reading the 3/4-sized USB page, we first need to read and ECC decode the first 2 pages
 - Need to know in which cells the 3/4 page is stored, and must know it error-free
- A total of 6 sense operations are needed to read the USB page
- Average read latency: \((1 \times 1 + 1 \times 2 + 0.75 \times 6)/2.75 = 2.73\) sense operations
 - Worse than the 2.33 of the conventional scheme, but still much better than the 6 of the non binary symbols scheme
Extensions

- The scheme can be extended to any number of voltage states
 - Examples:
 - 2.5 bits/cell using 6 voltage states by programming 2 full pages + a half-sized 3rd page to half of the cells
 - 1.5 bits/cell using 3 voltage states by programming a full page + a half-sized 2nd page to half of the cells
 - 3.25 bits/cell using 10 voltage states by programming 3 full pages + a 1/4-sized 4th page to 1/4 of the cells
- The scheme can be extended to other types of Gray mapping