Theoretical and empirical investigation of several common practices in deep learning

Daniel Soudry

Electrical Engineering
Why “overfit”?

Daniel Soudry, Elad Hoffer, Nati Srebro
The Implicit Bias of Gradient Descent on Separable Data (ICLR 2018)

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nati Srebro.
Characterizing implicit bias in terms of optimization geometry (ICML 2018).

Mor Shpigel-Nacson, Jason Lee, Suriya Gunasekar, Nathan Srebro, Daniel Soudry
Convergence of Gradient Descent on Separable Data (ArXiv, 2018)

Suriya Gunasekar, Jason D. Lee, Daniel Soudry, Nathan Srebro
Implicit Bias of Gradient Descent on Linear Convolutional Networks

Mor Shpigel Nacson, Nathan Srebro, Daniel Soudry
Stochastic Gradient Descent on Separable Data: Exact Convergence with a Fixed Learning Rate (ArXiv, 2018)
"Overfitting" is good for generalization?

Dataset: CIFAR10, Architecture: Resnet44, Training: SGD + momentum + gradient clipping
Gradient descent on logistic loss: $\Delta w = -\eta \nabla L(w)$

Theorem 1: $w(t) = \hat{w} \log t + \rho(t)$,
\hat{w} is the (L2) max margin vector
and $\|\rho(t)\| = O(\log \log t)$

Therefore: $\frac{w(t)}{\|w(t)\|} \rightarrow \frac{\hat{w}}{\|\hat{w}\|}$

Also holds for:
1) Stochastic gradient descent, **with fixed learning rate**
2) Multiclass
Logarithmically slow convergence to max-margin

\[\mathbf{w}(t) = \hat{\mathbf{w}} \log t + \rho(t) \]
... While test loss increases

\[w(t) = \hat{w} \log t + \rho(t) \]

Test loss \[= \Omega(\log(t)) \]
“Overfitting” Explained?

Dataset: CIFAR10, Architecture: Resnet44, Training: SGD + momentum + gradient clipping
Why Adam has worse generalization?

• Adaptive rate methods (e.g. AdaGrad, Adam)
 → Solution can depend on initial conditions
Why Exponential tail?

• Similar results for exp-tailed losses

• Other loss functions?

→ Loss with exponential tail has optimal rate

→ Power low tail (or heavier), no longer converges to max margin
Improve convergence speed?

- GD has slow converge rate $\frac{1}{\log t}$
- Normalized GD:

$$\Delta w = - \frac{1}{\sqrt{t}} \frac{\nabla L(w)}{\|\nabla L(w)\|}$$

\Rightarrow Convergence rate improves to $\frac{\log^2 t}{\sqrt{t}}$.

Potentially improves for deep networks:
Batch-norm and regularization

“Norm matters: efficient and accurate normalization schemes in deep networks”
Elad Hoffer, Ron Banner, Itay Golan, Daniel Soudry (Arxiv 2018)

“Scalable Methods for 8-bit Training of Neural Networks”
Ron Banner, Itay Hubara, Elad Hoffer, Daniel Soudry (Arxiv 2018)
Batch normalization

- Batch-norm (Ioffe, 15’) widely used:

 $$BN(x) = \frac{x - \langle x \rangle}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \langle x \rangle)^2}}$$

- Shortcomings:
 - Assumes independence between samples (problem when modeling time-series, RL, GANs, metric-learning etc.)
 - Requires high-precision operations ($\sqrt{\sum x^2}$), numerically unstable.
 - Significant computational and memory impact, with data-bound operations – makes up to 25% of computation time in current models (Gitman, 17’)
 - Why it works? Interaction with other regularization
Batch-norm Leads to norm invariance

The key observation:

• Given input x, weight vector w, its direction $\hat{w} = \frac{w}{\|w\|}$

• Batch-norm is norm invariant: $BN(\|w\|\hat{w}x) = BN(\hat{w}x)$

• Weight norm only affects effective learning rate, e.g. in SGD:

\[
\Delta \hat{w} = \frac{\eta}{\|w\|^2} (I - \hat{w}\hat{w}^\top) \nabla L(\hat{w}) + O(\eta^2)
\]
Weight decay before BN is redundant

- Weight-decay equivalent to learning-rate scaling
Replacing Batch-norm – switching norms

• Batch-normalization – just scaled L^2 normalization
• More numerically stable norms:

$$
\|x\|_1 = \sum_i |x_i| \quad \|x\|_\infty = \max_i \{|x_i|\}
$$

We use additional scaling constants so that the norm will behave similarly to L^2, by assuming that neural input is Gaussian, e.g.:

$$
\frac{1}{\sqrt{n}} E \|x - Ex\|_2 = \sqrt{\frac{\pi}{2}} \cdot \frac{1}{n} E \|x - Ex\|_1
$$
L^1 Batch-norm (Imagenet, Resnet)
Low precision batch-norm

Using L^1 batch-norm alleviates some of the low-precision difficulties of batch-norm. We can now train ResNet50 without issues on FP16:
With a few more tricks...

- Can now train ResNet ImageNet with bottleneck operations in int8:
Thank you for your time! Questions?